Part Number Hot Search : 
TK11034M LX8211A APM9968C FSUSB46 511816 809LT NFC1520 MF523600
Product Description
Full Text Search
 

To Download IRF7484QTR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet specifically designed for automotive applications, thisstripe planar design of hexfet ? power mosfets utilizes the latest processing techniques to achieveextremely low on-resistance per silicon area. additional features of this hexfet power mosfet are a 150c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these benefits combine to make this design an extremely efficient and reliable device for use in automotive applications and a wide variety of other applications. absolute maximum ratings description www.irf.com 1 o advanced process technology o ultra low on-resistance o fast switching o repetitive avalanche allowed up to tjmax benefits typical applicationso relay replacement o anti-lock braking system o air bag 
irf7484q v dss r ds(on) max (m  i d 40v 10@v gs = 7.0v 14a so-8 top view 8 12 3 4 5 6 7 d d d d g s a s s a symbol parameter typ. max. units r jl junction-to-drain lead CCC 20 r ja junction-to-ambient  CCC 50 c/w thermal resistance parameter max. units i d @ t a = 25c continuous drain current, v gs @ 10v 14 i d @ t a = 70c continuous drain current, v gs @ 10v 11 a i dm pulsed drain current   110 p d @t a = 25c power dissipation  2.5 w linear derating factor 0.02 w/c v gs gate-to-source voltage 8.0 v e as single pulse avalanche energy  230 mj i ar avalanche current  see fig.16c, 16d, 19, 20 a e ar repetitive avalanche energy  mj t j, t stg junction and storage temperature range -55 to + 150 c automotive mosfet  downloaded from: http:///
irf7484q 2 www.irf.com parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) showing the i sm pulsed source current integral reverse (body diode)  p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 2.3a, v gs = 0v  t rr reverse recovery time CCC 59 89 ns t j = 25c, i f = 2.3a q rr reverse recovery charge CCC 110 170 nc di/dt = 100a/s  source-drain ratings and characteristics  110       repetitive rating; pulse width limited by max. junction temperature.  pulse width  400s; duty cycle 
  surface mounted on 1 in square cu board.   starting t j = 25c, l = 2.3mh, r g = 25 ? , i as = 14a. (see figure 12).   i sd 14a, di/dt 140a/s, v dd v (br)dss , t j 150c.  limited by t jmax , see fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.040 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC CCC 10 m ? v gs = 7.0v, i d = 14a  v gs(th) gate threshold voltage 1.0 CCC 2.0 v v ds = v gs , i d = 250a g fs forward transconductance 40 CCC CCC s v ds = 10v, i d = 14a CCC CCC 20 v ds = 40v, v gs = 0v CCC CCC 250 v ds = 32v, v gs = 0v, t j = 125c gate-to-source forward leakage CCC CCC 200 v gs = 8.0v gate-to-source reverse leakage CCC CCC -200 v gs = -8.0v q g total gate charge CCC 69 100 i d = 14a q gs gate-to-source charge CCC 9.0 CCC nc v ds = 32v q gd gate-to-drain ("miller") charge CCC 16 CCC v gs = 7.0v t d(on) turn-on delay time CCC 9.3 CCC v dd = 20v  t r rise time CCC 5.0 CCC i d = 1.0a t d(off) turn-off delay time CCC 180 CCC r g = 6.2 ? t f fall time CCC 58 CCC v gs = 7.0v c iss input capacitance CCC 3520 CCC v gs = 0v c oss output capacitance CCC 660 CCC pf v ds = 25v c rss reverse transfer capacitance CCC 76 CCC ? = 1.0mhz electrical characteristics @ t j = 25c (unless otherwise specified)   i dss drain-to-source leakage current   s d g 2.3 downloaded from: http:///
irf7484q www.irf.com 3 fig 3. typical transfer characteristics fig 2. typical output characteristics fig 1. typical output characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 0.0 0.5 1.0 1.5 2.0 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 14a fig 4. normalized on-resistance vs. temperature 1.0 2.0 3.0 4.0 v gs , gate-to-source voltage (v) 0.10 1.00 10.00 100.00 1000.00 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 150c v ds = 15v 20s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 10000 100000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1.8v 20s pulse width tj = 25c vgs top 7.5v 7.0v 4.5v 3.0v 2.5v 2.3v 2.0v bottom 1.8v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1.8v 20s pulse width tj = 150c vgs top 7.5v 7.0v 4.5v 3.0v 2.5v 2.3v 2.0v bottom 1.8v downloaded from: http:///
irf7484q 4 www.irf.com fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 8. maximum safe operating area 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 6 7 8 q , total gate charge (nc) v , gate-to-source voltage (v) g gs i = d 14a v = 8v ds v = 20v ds v = 32v ds fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v sd , source-to-drain voltage (v) 0.10 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v downloaded from: http:///
irf7484q www.irf.com 5 fig 11. typical effective transient thermal impedance, junction-to-ambient fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 0 3 6 9 12 15 t , case temperature ( c) i , drain current (a) c d 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 10 0 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thja a p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thja 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) fig 10a. switching time test circuit v ds 90%10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms   
 1      0.1 %            + -   downloaded from: http:///
irf7484q 6 www.irf.com fig 13. typical on-resistance vs. drain current fig 12. typical on-resistance vs. gate voltage fig 14. typical threshold voltage vs. junction temperature   typical power vs. time 0 2 04 06 08 01 0 01 2 0 i d , drain current (a) 8.60 8.70 8.80 8.90 9.00 9.10 9.20 9.30 9.40 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) v gs = 7.0v 1.00 10.00 100.00 1000.00 time (sec) 0 10 20 30 40 50 p o w e r ( w ) 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs, gate -to -source voltage (v) 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 14a -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a downloaded from: http:///
irf7484q www.irf.com 7 25 50 75 100 125 150 0 104 208 312 416 520 starting tj, junction temperature ( c) e , single pulse avalanche energy (mj) as i d top bottom 6.3a 11a 14a q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 17. gate charge test circuit fig 18. basic gate charge waveform fig 16a. maximum avalanche energy vs. drain current fig 16d. unclamped inductive waveforms fig 16c. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v downloaded from: http:///
irf7484q 8 www.irf.com fig 19. typical avalanche current vs.pulsewidth fig 20. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00 1.0e+01 1.0e+02 1.0e+03 tav (sec) 0.01 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 starting t j , junction temperature (c) 0 25 50 75 100 125 150 175 200 225 250 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 14a downloaded from: http:///
irf7484q www.irf.com 9 so-8 package details so-8 part marking       

  



 



 
  



 
 


 
 

 
 
 
  
 

 
 
 
 
 
 
           

 
 

 
         
                            

       

       
     !    " ##       $%   $                   
 

   $  $       &     
 
    

 

 
 
 
  

          

   downloaded from: http:///
irf7484q 10 www.irf.com 330.00 (12.992) max. 14.40 ( .566 ) 12.40 ( .488 ) notes : 1. controlling dimension : millimeter. 2. outline conforms to eia-481 & eia-541. feed direction terminal number 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) notes: 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters(inches). 3. outline conforms to eia-481 & eia-541. so-8 tape and reel ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 01/05 data and specifications subject to change without notice. this product has been designed and qualified for the automo tive [q 101] market. qualification standards can be found on irs web site. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRF7484QTR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X